Measuring thermal and thermoelectric properties- principles, measuring techniques and analysis

J. Hejtmánek and K. Knížek
Institute of Physics of ASCR, v.v.i., Na Slovance 2, 182 21 PRAHA 8, CZ
Location: Cukrovarnicka 10, Prague 6, 162 53
hejtman@fzu.cz, phone +420 2 303 18 419, fax +420 2 333 43 184
WWW: www.fzu.cz
Thermoelectric materials

Thermoelectricity
- Thermoelectric conversion of energy – characteristics
- Electrical resistivity
- Thermoelectric power
- Thermal conductivity, thermal diffusivity (Wiedemann-Franz law in “non metals”)

Measuring techniques – compendium of measuring techniques and analysis

-Low temperature systems – commercial (Quantum Design), Thermal transport option & home made inset (5-350 K), magnetic field
- Home made sample holders ➔ objective to measure all thermoelectric characteristics simultaneously on one specimen (each specimen unique character)
- Close cycle refrigerators: Leybold (300>T>12 K) Janis (300> T>3.5 K) – snags, (temperature fluctuations, parasite heat flow,..), calibration, reliability
- Home made High temperature cells, principle, difficulties, calibration, reliability
Low temperature thermal and electrical measurements ($\lambda, \alpha, \rho, \kappa$) using close-cycle cryocooling systems
simultaneous measurement of $\lambda, \alpha, \rho, \kappa$ - steady state & dynamic

<table>
<thead>
<tr>
<th>Column Name</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signification</td>
<td>Temperature</td>
<td>ΔT between ΔT_{up} and ΔT_{down}</td>
<td>ΔT between sample center and sink</td>
<td>Heater Power</td>
<td>Raw thermal Conductivity</td>
<td>Corrected Thermal Conductivity</td>
<td>Corrected Seebeck coefficient</td>
<td>Resistivity</td>
<td>Diffusivity</td>
<td>Heat capacity</td>
</tr>
<tr>
<td>Symbol</td>
<td>T</td>
<td>ΔT</td>
<td>ΔT</td>
<td>P</td>
<td>λ_{raw}</td>
<td>λ</td>
<td>TEP, S or α</td>
<td>ρ</td>
<td>κ</td>
<td>C_V</td>
</tr>
<tr>
<td>Unit</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>W</td>
<td>$Wm^{-1}K^{-1}$</td>
<td>$Wm^{-1}K^{-1}$</td>
<td>μVK^{-1}</td>
<td>$m\Omega cm$</td>
<td>mm^2/s</td>
<td>$J/K/cm^3$</td>
</tr>
</tbody>
</table>

$F = \frac{Distance}{Area}$

$E = \frac{V}{Distance}; J = \frac{I}{Area}$

$\lambda_{raw} = \frac{R_{heater} I^2}{\Delta T * F}$

$\lambda = \lambda_{raw} - \lambda_{rad} - \lambda_{wires}$

$\rho = \frac{E}{J}$

$\alpha = \frac{\Delta V}{\Delta T} + \alpha_{leads}$
Low temperature thermal and electrical measurements \((\lambda, \alpha, \rho, \kappa)\) using close-cycle cryocooling systems
Simultaneous measurement of \(\lambda, \alpha, \rho, \kappa\)

4-point \(\lambda, S\) and \(\rho\) method for “normal” samples

- **Si calibrated diod**
 - Thermal anchor of E-differential thermocouples

- **E-thermocouple**
 - \(\Delta T\) **Heater**

- **E-thermocouple**
 - \(\Delta T\) **Up**
 - Chromel wire as voltage lead

- **E-thermocouple**
 - \(\Delta T\) **Down**
 - Chromel wire as voltage lead

- **Current lead** Cr-Ni wire **Up**

- **Current lead** Cr-Ni wire **Down**

- **Anchoring Cu hoop** (0.2 mm Wire) **Up**

- **Anchoring Cu hoop** (0.2 mm Wire) **Down**

- **Connector**

- **Protective frame**

- **Mini heater**

- **Pasted with Ge varnish-separated cigarette paper**

- **Sample**

- **Pasted with Ag-filled Cyanacrylate**
Thermal and electrical measurements I (λ, α, ρ)

Sample mounting, topology

Steady state 4-point measurement
Acquisition performed after temperature (~50 mK) and thermal voltage (~1-5%+0.5μV) stability is achieved
Thermal and electrical measurements II ($\lambda, \alpha, \rho, \kappa, c_v$)

Low temperature 4-point cell
Close cycle He-cryostat (3.5-300K)
Thermal and electrical measurements II - \((\lambda, \alpha, \rho, \kappa, c_v)\)

Software-
- fully WXP 32 bit compatible, PCI HPIB card, external measuring system controlled via PC, program in DELPHI

Hardware-
- same cell, better temperature control needed, cold finger itself !! High temperature fluctuations!! + lower temperature, \(\Leftrightarrow\) stronger requirements for temperature measurement and control!

Ultra-low temperature
- 4-point cell
- Close cycle He-cryostat
- \((3.5-300K)\) operating since 2006
Thermal and electrical measurements II (\(\lambda, \alpha, \rho, \kappa, c_v\))

PROBLEMS-temperature fluctuations

![Graph showing temperature (K) over time (min)]
Thermal and electrical measurements II ($\lambda, \alpha, \rho, \kappa, c_v$)

PROBLEMS solved temperature fluctuations eliminated

$T_{(\text{set})} = 3.2 \text{ K}$

$T_{(\text{set})} = 6 \text{ K}$

$T_{(\text{set})} = 12 \text{ K}$

Temperature on measuring cell (after filtering) controlled by LakeShore

Natural temperature fluctuations on cold finger

Temperature on the sample at 6 K after temperature stabilization

Temperature on measuring cell (after filtering) controlled by LakeShore

Natural temperature fluctuations on cold finger during cooling

Temperature on the sample at 12 K after temperature stabilization
High temperature stability inspires to measure thermal diffusivity and then heat capacity $C_v \sim \lambda / \kappa$ before thermal equilibrium is achieved.
Reliability of thermal diffusivity \((C_v)\) data: “good” samples - relaxation time \(\tau 10^{0–10^2} s\)

- Diffusivity \((\Delta T_{up})\) measurement at various temperatures
- first readings 5 rds/s
- since \(~4s\) 1 rds/s
- Sample

\(\text{LaCo}_{0.95}\text{Ni}_{0.05}\text{O}_3\)
Recent results, for temperature acquisition Keithley 2001/MEM2 High-Performance, 7-1/2-Digit DMM

Bad thermal conductors - correct Cv data

Good measurement - Heat capacity measurements II
Reliability of thermal diffusivity (C_v) data:
“good” sample - i.e. with bad thermal conductivity
-relaxation time $\tau \, 10^{0-2}$s

\[C_p (\text{Jmol}^{-1} \cdot \text{K}^{-1}) \]

\[T^2 (\text{K}) \]

$sintered$ $PPMS$

$sintered$ $CloseCycle$

$SrMoO_{1.73}N_{1.27}$

$SrMoO_{1.95}N_{1.05}$
Reliability of thermal diffusivity (Cv) data: “bad” sample - i.e with high thermal conductivity - thermal resistance between the sample and heat sink -

\[\Delta T_{up} \]

- \((\Delta T_{up})\) does not decrease with decreasing temperature
- \(\tau\) decreases with decreasing temperature, but the measured thermal diffusivity is limited by glue joint with Cu-heat sink
- \(\text{Al}_2\text{O}_3\)
Bad measurement

Good thermal conductor - wrong Cv data

Cv data WRONG!! diffusivity limited by wrong thermal sample anchoring

error 4%

Cv data measured using diffusivity and thermal conductivity

- □ B PPMS Santava Praha
- ■ Cp NIST

Good thermal conductor - wrong Cv data

Cp (Al2O3)

T (K)

T (K)

T (K)

T (K)
Reliability of measured data:
Role of vacuum in thermal measurement

- Diffusivity (ΔT_{up}) measurement - 300 K
- Sample LaCo$_{0.8}$Ti$_{0.2}$O$_3$
- At 400 Turbo-pump started ($10^{-2} \rightarrow 10^{-4}$ mbar)
Reliability of thermal and electrical measurements II
Thermal conductivity for “normal” thermal conductors (λ)-

Importance of knowledge ΔT_{heater}

Correction formula:

$$\lambda_{\text{radation corrected}} = \text{factor} \times \frac{(\text{power} - \text{Heater Radiation} - \text{Sample radiation})/\Delta(T)}{\Delta(T)}$$

$$\lambda_{\text{radation corrected}} = \frac{\text{length/CrossSection} \times (R I^2 - T_{abs}^3 \alpha \Delta T(\text{heater}) \times 5.67 \times 15^{-6} \Delta T(\text{heater})/\Delta T(\text{up}) - T_{abs}^3 \Delta T(\text{sample center}) \times 5.67 \times 15^{-6} \text{SampleArea})/\Delta(T)}{\Delta(T)}$$

Mo$_3$Sb$_7$ small sample- perfect heater anchoring
Mo$_3$Sb$_7$ bad heater anchoring

Temperature difference (K)

Temperature (K)
Reliability of thermal and electrical measurements II
Thermal conductivity for "poor" thermal conductors (λ)

Correction on Heater radiation, sample radiation and parasitic heat flow via thermocouples and current leads

Correction formula: NEW CORRECTION

$$\lambda_{\text{radiation corrected}} = \text{factor} \times \left(\text{power - Heater Radiation - Sample radiation - Thermocouple heat flow}\right)/\Delta T$$

$$\lambda_{\text{radiation corrected}} = \frac{\text{length/CrossSection}\times(R)^2\times T_{\text{abs}}^3 \times \Delta T(\text{heater})\times 5.67\times10^{-8}\times40e^{-6} - T_{\text{abs}}^3 \times \Delta T(\text{up})\times 5.67\times10^{-8}\times3\times\text{Sample Area}}{(22-22\times0.992\times e^{-6}\times\Delta T(\text{heater}))}$$
Thermal and electrical measurements - low conducting materials

2-point geometry, flat sample - heat flow through the sample simplified

- bad geometry - 4-point! radiation error!! (factor=716)
- radiation corrected
- new geometry - 2-point!
 - no radiation, factor=88
 - new geometry - porosity corrected!
 - no radiation supposed, factor=88, corrected on porosity using $\lambda_{\text{cor}} = \frac{2\lambda_{\text{measured}}}{3(1-p)}$

conductance of thermocouples and leads
Reliability of thermal and electrical measurements II
Thermoelectric power for "good" metals - small α
Tantalum metal between 3.5-300K

Compare with PPMS

PPMS Thermal transport:
SEEBECK COEFFICIENT (S)
Typical Accuracy:
- Error in $S = \pm 5$ % or
- Error in $S = \pm 0.5 \mu V/K$ or
- Error in $V = \pm 2 \mu V$, whichever is greater
Approximate Range: $1 \mu V/K - 1 V/K
Reliability of thermal measurements II
Thermal conductivity and thermoelectric power for “high” thermal conductors (λ, α)

necessity of good thermal sink for correct definition of ΔT

Yellow Brass

λ (Wm$^{-1}$K$^{-1}$) vs T (K)

- + Hejtmanek, May 2006
- Reference Book1
- LakeShore figure

Mn-metal, May 2006

Thermoelectric power (µVK$^{-1}$) vs T (K)

- magnon drag peak

λ, α
Low temperature thermopower measurements: reliability, corrections

![Graph showing thermoelectric power vs. temperature for different Ag powder additions.]

Depends on used DMM (DnVM), shielding, wiring...
Thermal and electrical measurements II - software \((\lambda, \alpha, \rho, k, c_v)\)
Thermal and electrical measurements (l,a,r,k)

PPMS cell -home made+external measuring and control system

Hardware-
- sample holder, E-type thermocouples,
- calibration, thermal stability, sensitivity to magnetic field

PPMS inset
(Caen-Crismat)
(5-350 K)
Operating since 1999

Software-
- PPMS, external measuring system controlled via PC
- old-fashioned TurboPascal-DOS
E-type thermocouples
Isothermal magnetotransport
Impedance based on DMM, nanoVM
Proper criteria for thermal stability

Calibration, 2006
Bi-based superconducting cuprates

CMR manganites, 2000
Thermal and electrical measurements \((\lambda, \alpha, \rho, \kappa)\)

Hardware-
- Quantum Design introduced Thermal transport option

Software-
- PPMS delivered, dynamic regime

THERMAL CONDUCTANCE \((\kappa)\)

Typical Accuracy:

- \(\pm 5\%\) or \(\pm 2\ \mu W/K\), whichever is greater, for \(T < 15\ K\)
- \(\pm 5\%\) or \(\pm 20\ \mu W/K\), whichever is greater, for \(15\ K < T < 200\ K\)
- \(\pm 5\%\) or \(\pm 0.5\ mW/K\), whichever is greater, for \(200\ K < T < 300\ K\)
- \(\pm 5\%\) or \(\pm 1\ mW/K\), whichever is greater, for \(T > 300\ K\)

SEEBECK COEFFICIENT \((S)\)

Typical Accuracy:

- Error in \(S = \pm 5\%\) or,
- Error in \(S = \pm 0.5\ \mu V/K\) or,
- Error in \(V = \pm 2\ \mu V\), whichever is greater

SPEED OF ACQUISITION:

Typically temperature slew rate:

- \(\pm 0.5\ K/min, \ T > 20\ K\)
- \(\pm 0.2\ K/min, \ T < 20\ K\)
- 14 hour run from 390 to 1.9 K
Thermal and electrical measurements

COMPARE PPMS-Cryocooled ($\lambda, \alpha, \rho, \kappa$)

PPMS sample topology

- Heater shoe
- Copper lead area
- Epoxy bond
- Two thermometers
- Coldfoot

$$\Delta T = \frac{\Delta V}{\Delta T}$$

Not steady state method

ΔT calculated on a base τ_1, τ_2

Cryo-cooled sample topology

- ΔT heater
- Heater chip resistance
- Direction of electric current J
- Distance ΔT and ΔV
- ΔT up
- ΔT down
- E
- Thermocouples
- Underlay

$$\lambda = F \times \frac{\text{Power}}{\Delta T}$$

$$F = \frac{l}{\text{area}} \quad \Delta T = T_1 - T_2$$

Steady state method ΔT measured

Arrangement of home-made thermal and transport measurement
Arrangement of home-made 4-point thermal and transport measurement λ, S and ρ.

PPMS sample topology
- 2 Cernox chip thermometers
- Heater chip resistance
- Protection for radiation

Cryo cooled sample topology
- 4-point λ, S and ρ method for “normal” samples
- Mini heater
- Protective frame
- Connector

- Anchoring Cu hoop (0.2 mm Wire) **Up**
- Anchoring Cu hoop (0.2 mm Wire) **Down**

- Current lead Cr-Ni wire **Up**
- Current lead Cr-Ni wire **Down**

- Pasted with Ge varnish-separated cigarette paper
- Pasted with Ag-filled Cyanacrylate

- Si calibrated diod Thermal anchor of E-differential thermocouples
- E-thermocouple AT **Heater**
- E-thermocouple AT **Up** Chromel wire as voltage lead
- E-thermocouple AT **Down** Chromel wire as voltage lead

- Sample

- 2 for I_{heater} and 1 for I_{sample}
- 4 for T_{up} and 1 for U_{up}
- 4 for T_{down} and 1 for U_{down}

COMPARE PPMS-Cryocooled ($\lambda, \alpha, \rho, \kappa$)

Thermal and electrical measurements
Thermal and electrical measurements **COMPARE** PPMS-Cryocooled ($\lambda, \alpha, \rho, \kappa$)

PPMS-Principle of the measurement

Time evolution of the:

(a) heater power

(b) hot and cold thermometer and drift of baseline

(c) hot thermometer with analysis of respective time constants
RESULTS: Electrical resistivity

La$_{0.2}$Ca$_{0.8}$CoO$_3$ - PT041

No problem

\[\rho (\text{m}\Omega \cdot \text{cm}) \]

\[T (K) \]

homemade

PPMS
RESULTS: Thermal conductivity

La$_{0.2}$Ca$_{0.8}$CoO$_3$ - PT041

Surprising agreement
RESULTS: Thermoelectric power

La_{0.2}Ca_{0.8}CoO_3 - PT041

Surprising agreement
HIGH TEMPERATURE measurements

High temperature 4-point cell (300 – 1200 K), Thermoelectric power and electrical resistivity

TEP4points : \(\Delta V(T_4-T_3) / (T_4-T_3) = U3/(T_4-T_3) \)

TEP3points : \(\Delta V(T_4-T_2) / (T_4-T_2) = (U3+U4)/(T_4-T_2) \)

TEP2points : \(\Delta V(T_1-T_2) / (T_1-T_2) = U1/(T_1-T_2) \)

RES = U3/I
High temperature cell

Stability:

\[\Sigma U = U_1 + U_4 + U_3 + U_2 = 0 \]

\[T_1 > T_4 > T_3 > T_2 \]
HIGH TEMPERATURE measurements

High temperature cell

Heater
Inserted in the holder

Pressing shank

Mica

K-thermocouple
Down
Chromel wire as **voltage** lead
Alumel wire as **current** lead

Lava based sample holder

Ag thin plate pasted with Ag-paste

K-thermocouple **Up**
Chromel wire as **voltage** lead
Alumel wire as **current** lead

K-thermocouple **High**
Chromel wire as **voltage** lead

K-thermocouple **Low**
Chromel wire as **voltage** lead

Piston attached to cold end

Sample hidden under mica

Ag thin plate pasted with Ag-paste
HIGH TEMPERATURE measurements-reliability of measured data

LaCo$_{0.95}$Mg$_{0.05}$O$_3$

$S = \frac{\Delta V}{\Delta T}$

- pressing sheet mica
- pressing sheet alumina
- alumina good conductor
- mica bad conductor
- heater
- cold finger
- relative error 30%
- relative error 8%
- relative error 65%
- relative error 53%
- 4 points method
- 3 points method
- 2 points method
- basic low temperature data
High temperature thermopower measurements: reliability, corrections

Ni metal

Fe₃O₄-xtal

Sample - pure nickel, measured in air
Thermoelectric power measurements II (α)
Calibration using superconducting ceramics - matching between small α
Close cycle He-cryostat (3.5-300K), High temperature cell
Thermoelectric power measurements II (α)
Calibration using cobalt perovskites with M-I transition
- matching between high positive α
Close cycle He-cryostat (3.5-300K), High temperature cell
Thermoelectric power measurements II (α)
Calibration using Mn perovskites
- matching between high negative α
Close cycle He-cryostat (3.5-300K), High temperature cell
Electrical resistivity measurements II (ρ)
Calibration using cobalt perovskites with M-I transition - matching of resistivity and data quality
Close cycle He-cryostat (3.5-300K), High temperature cell
Program

Segment: 1 of 2 Type: Seb&Res
Active: From: 300 To: 840 Step: 20.00
Already Measured Data: 3 of 56
Seebeck - Gr. Heat: 0 (5.5K: 0 of 1)
SetPoint[K]: 360.0 Ramp[K/m]: 0.0
P: 22.0 I: 382 D: 64 OP: 19.3
GradHeat: 0

Sample

Header: la0.2y0.3ca0.5coo3 sample fuj
FileName: ly3cach2
Dimensions[mm]: 2.72x1.95/4.77
Factor[cm]: 0.1112

<table>
<thead>
<tr>
<th>Time</th>
<th>10.000mA</th>
<th>0.915mV</th>
<th>-0.913mV</th>
<th>0.914mV</th>
<th>0.09140hm</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:58h</td>
<td>314.49</td>
<td>32.29</td>
<td>0.81</td>
<td>309.24</td>
<td>10.20</td>
</tr>
<tr>
<td>16:18h</td>
<td>328.28</td>
<td>32.50</td>
<td>0.22</td>
<td>323.00</td>
<td>9.71</td>
</tr>
<tr>
<td>16:37h</td>
<td>346.46</td>
<td>32.86</td>
<td>0.66</td>
<td>340.74</td>
<td>9.26</td>
</tr>
</tbody>
</table>

Eurotherm

<table>
<thead>
<tr>
<th>Key:</th>
<th>M</th>
<th>Actual</th>
<th>Average (std.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T[K]</td>
<td>360.10</td>
<td>359.38 (0.11)</td>
<td></td>
</tr>
<tr>
<td>WSP[K]</td>
<td>360.00</td>
<td>0 (0.0)</td>
<td></td>
</tr>
</tbody>
</table>

VoltMeter

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>357.56</td>
<td>348.94</td>
<td>344.39</td>
<td>357.06</td>
<td>0.51</td>
<td>-48.16</td>
<td>5.25</td>
<td>-0.88</td>
<td>32.75</td>
<td>31.56</td>
<td>25.83</td>
<td>0.00</td>
</tr>
</tbody>
</table>

END